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The method of multiple scales is used to determine a first-order

uniform expansion for the effect of counter-rotating steady streamwise

vortices in growing boundary layers on Tollmien-Schlichting waves. The

results show that such vortices have a strong tendency to amplify

three-dimensional Tollmien-Schlichting waves having a spanwise wave-

length that is twice the wavelength of the vortices. An analytical

expression is derived for the growth rates of these waves. These growth

rates increase linearly with increasing amplitudes of the vortices.

I. INTRODUCTION

We consider the effect of counter-rotating steady streamwise

vortices on the instability of growing boundary layers. We describe

a parametric instability mechanism by which such vorticies amplify

selected three-dimensional Tollmien-Schlichting waves. To first order,

the selected waves have a spanwise wavelength that is twice that of the

vortices.

Weak and moderately strong steady streamwise vortices arise abun-

dantly in boundary layers from many causes. In a series of wind-tunnel

tests over flat plates with zero-pressure gradient, Klebanoff & Tidstrom

(1959) observed steady quasi-periodic variations in the spanwise direc-

tion (streamwise vortices) evidently evoked by freestream conditions.

Similar vortices were observed in a National Physical Laboratory tunnel



specifically designed for the study of two-dimensional boundary layers.

Bradshaw (1965) found that these variations may appear downstream of

slightly nonuniform settling-chamber damping screens, depending on their

solidity. Using the method of matched asymptotic expansions, Crow (1966)

inferred the effect of a small, periodic incident transverse flow on the

mean boundary layer over a flat plate.

G6rtler (1941) found that a boundary layer over a concave surface

is strongly unstable. The instability is manifested by the presence of

counter-rotating vortices having their axis in the streamwise direction.

Using the tellurium method, Wortman (1969) gave detailed flow visualization

of these vortices on slightly curved walls. Bippes (1978) conducted

experiments on walls with radii of curvature of 0.5 and Im so that the

generated Gdrtler vortices are fairly strong. He made the flow visible

by using the hydrogen-bubble technique and photographed it with a photo-

grogrammatic sterocamera. He analyzed photogrammetrically the photographs

and obtained fairly accurate quantitative information of the flow field.

Unlike the case of preexisting streamwise vo'tices, Gbrtler vortices generated

by a concave surface are amplified with streamwise distance. Their

amplification is exponential (Smith, 1955) when they are weak and it

appears to be linear when they are strong (Bippes, 1978). Floryan and

Saric (1979) gave a comprehensive review of the different analyses of

these vortices and, using the model of Smith (1955), presented fairly

accurate numerical results describing these vortices.

In their experiments on the nature of boundary-layer stability,

Klebanoff, Tidstrom & Sargent (1962) established that streamwise vortices

are associated with nonlinear three-dimensional wave motions. Benney &

Lin (1966) modeled the generation of these vortices by the nonlinear
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interaction of a two-dimensional wave with a three-dimensional wave

superimposed on the laminar profile. Using this model, Antar & Collins

(1975) calculated these vortices in a boundary layer on a flat plate

for different amplitudes of the waves.

A number of experimental studies investigated the influence of

steady streamwise vortices on the transition from laminar to turbulent

flow. Aihara (1962), Tani & Sakagami (1964), and Tani & Aihara (1969)

studied the influence of steady streamwise vortices on two-dimensional

Tollmien-Schlichtii1 g waves generated by a vibrating ribbon. They con-

sidered the case in which the vortices were generated naturally on a

concave surface (Gdrtler vortices) as well as the case in which the

vortices were generated artifically by a row of wings on a cancave

surface. They measured the distributions of the mean velocity and wave

intensity across the boundary layer for three spanwise positions at a

number of streamwise stations. They concluded that the Gbrtler vortices

indirectly affect the transition by inducing a spanwise variation in

boundary-layer thickness, at least when the radii of curvature are not

extremely small. However, they did not present any measurements of

the growth rates of the Tollmien-Schlichting waves. Wortman (1969)

investigated the development of natural transition downstream of Gdrtler

vortices. Using the tellurium method, he determined the direction and

relative magnitude of the unsteady velocities from the streaklines by

confining his observations to the vicinity of the starting point of the

streaklines. He observed a steady second-order instability that destroys

the symmetry of the Gbrtler vortices. He suggested that this instability

is caused by secondary vortices having spanwise wavelengths that are
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twice those of the Gdrtler vortices. Then he observed a third-order

instability, consisting of regular three-dimensional oscillations.

The above shows that there are many theoretical and experimental

studies relating to the generation of streamwise vortices and a number

of experimental studies relating to their effect on transition, but to

the author's knowledge, no theory yet exists on how these vortices

affect the development of Tollmien-Schlichting waves. The purpose of

the present paper is to present a parameteric instability mechanism by

which the streamwise vortices increase the growth of selected Tollmien-

Schlichting waves in growing boundary layers. To first order the

selected waves have a spanwise wavelength that is twice that of the

vortices, while to second order the selected waves have spanwise wave-

lengths that are equal and twice that of the vortices. To minimize the

algebra, we consider flows with growing steady counter-rotating vortices

over flat plates with or without pressure gradients.
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II. Problem Formulation

We consider the stability of a basic flow that consists of the

superposition of the Blasius or Falkner-Skan flow and a flow corres-

ponding to growing steady quasi-periodic counter-rotating streamwise

vortices. Thus we consider the stability of the flow described by

U = Uo(xl,y) + vU1(x11z1,y)cos2$z + (1)

V = eVo(x 2 ,y) + evVj(xj,zjy)cos2Bz + (2)

W = EvW1 (xj,zj,y)sin2az + .... (3)

P = Po(x 1 ) + Cv P(xj,zj,y)cos2 z + ... , (4)

where the subscript o refers to the Blasius of Falkner-Skan flow, the

subscript I refers to the flow corresponding the the streamwise vortices,

x, = ex, zi = Lz, c is a small dimensonless quantity that accounts for

the quasi-periodicity of the vortices as well as for the streamwise growth

of the vortices and the boundary layer, a is a real dimensionless spanwise

wavenumber, and cv is a small dimensionless quantity that indicates the

strength of the streamwise vortices. In Eqs. (1) - (4), velocities and

lengths are made dimensionless by using a reference velocity Ur and a

reference length 6r* We superpose the small unsteady perturbation

quantities eTU(X,y,zt), ETV(X,yz,t), £Tw(x,y,z,t), and :TP(xly,z,t)

on those given in Eqs. (1) - (4) so that the total flow quantities

become U + LTu, V + ETv, W + LTW, and P + LTP. Here, ET is a small

dimensionless quantity that is the order of the amplitude of the Tollmien-

Schlichting waves. In this paper, LT is assumed to be much smaller than

Lv and e so that terms the order of E2 can be neglected compared with LTev

and eTE. Substituting these total flow quantities into the dimension-

5



less Navier-Stokes equations, subtracting the basic-flow quantities, and

keeping linear terms in the perturbation quantities, we obtain

au'+ " + a" = 0, (5)

au + U 2u U u U +u WU
+ U + V2 ++v1 i -- =" V2u,(6)

- x ax ay ay az -z ax ~ ,6
v Y +V v V v wV a p 2.+Iv

-+ U - + u + V -+ v -+ W-+ w - az V~v,(7)

a)w + w UW w U LW +w V W W L + W W = ._ R + j W ( 8 )
at ax ax ay ay a az R '

where t is made dimensionless by using 6r/Ur , R = U r6r/v is the Reynolds

number, and v is the kinematic viscosity of the fluid.

Substituting Eqs. (l)-(4) into Eqs. (6)-(8), we obtain

au +O -+ v + 2 u u+ Vx, Lu + uU Uv]cos 20z
at ax ay ax R =- U + a ay ay

+ [WI au - 20Uwsin26 U u + Cau (e (9)

-v+ L + 1 V2v - L1 + V a- + a ('v )  (9)

at ax 3y R v V v]cos2z

+ [W1 v 2 V iwsin2z - e[VD + ,V_ V] + O(C2  C)

(10)

+ - UV wL + V + 20Wzw~cos26z3-U x 9)z Rv ax a-y

+ I v + W , .li  - e VC LW + 0( v (
ay wz . Isn2  Bw (

Equations (5) and (9)-(11) need to be supplemented by initial and bound-

ary conditions. The initial conditions are specified later, while the

boundary conditions for an impermeable flat surface are

u = v = w = 0 at y = 0, (12)

u, v, w 0 at y =. (13)
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III. Solution

We use the method of multiple scales (e.g., Nayfeh, 1973) to

determine a first-order uniform expansion for Eqs. (5) and (9)-(13). 
To

accomplish this, we let c. = 0(c) and write cv 
= Xc, where X = 0(1). If

C<< Ev the effect of the growth of the boundary layer is small com-

pared with the effect of the vortices. If c << , the effect of the

vortices is small compared with that due to the growth of the boundary

layer, and the solution accounts for the nonparallel effects 
only. Thus,

the above ordering yields an expansion that accounts for the effects 
of

the streamwise vortices and the growth of the boundary layer, and 
it

includes the cases c << c and cv << c as special cases.

We seek a uniform expansion for Eqs. (5) and (9)-(13) in the 
form

u = c nun(xO,xI,y,Z,Z l tot l ) + 0(c 2 ), (14)

n0 n
v nnXlyz~]t~l + 0(c2), (15)

w = cnwn(X 0,Xl,y,zo,zi,to,tI) + O(c), (16)
n=O

I E npn(XO,Xy,Zozl,t0,tl + 0(c2), (17)

where

n n nXn = Cnx, Zn C nz, tn E nt. (18)

n n n

Substituting Eqs. (14)-(18) into Eqs. (5) and (9)-(13) and equating

coefficients of like powers c, we obtain
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Order F-0

O(1(uo,vo,wo) = DUG0 + ava0 + awk (19)

#r2(UO,VD,PO) =all0-+ UO aUl0 + V0 aU0 + - 2 = 0, (20)at0  ax0  ay ax0  R0

.4 3(Vo'po) = 2-O+ U0 aV0 + P a 0 x0 y - V2V0  0, (1

/(Wo'po) = a + Uo + *-Pi - 1 V2W0 = 0, (22)ato ax0  azo R

U= =O = 0 at y 0, (23)

U0,VoW 0 - 0 a s y 00, (24)

Order E:

-(1(ul'vl9wl) -_a 0 _a 0 (25)

.Z2(1,vpU = u 0 IU ap + 2 l O +
at, ax1  ax1  R axoax, azoaz1 l

a l2u0 + Va- + a3!l vo]cos2azo + [Wl a-u0
-x Y 'ay ay az0

- 26Uiwolsin2BzJ -DU0 ax - VO ay

Z 3( I P a -- - U 0 aV0  + 2 _ __ a v u 1 a-v0
at,1 x [avO3x+ az0z1 l- ax0

+ a,2v0-g + av1 -volcos26zo + [W av0Q $losnB
ay ay azo -2Vw~i2z

-o IV VO ,0 (27)ay ay

at1, ax1 - z1  R axoax, azoaz1

- u aw0 + V, aw0 + 2aWjwolcos2$zo + [aw v
ILL ax0  ay DaY

+ W, Lw*-sn2szl - o aw0  28az0  a28
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L1 V1  Wi 0 at y 0, (29)

0 a 0y0, (30)

where

The initial conditions are taken such that the solution of the

zeroth-order problem, Eqs. (19)-(24), consists of two wave packets

centered around the frequency w, the streamwise wavenumber cX, and the

spanwise wavenumbers j and - si that is,

uo A1 (x1 ,z1 ,t1 ) j(y,x1 )exp(ie1 ) + A2(X1 ,zI1 ~) 21 (y,X1 )exp(ie2),

(31)

v. AIC 12(y,x,)exp(iel) + A2 ~ 2 yx)x~e) (32)

=o AjC 13(y,xj)exp(ie1 ) + A2C23(y,xj)exp(ie2), (33)

po = Aj1 4~(Y,XI)exp(ie1 ) + A2C2 4(yIX 1)exp(i6 2), (34)

where

a n =ji(xl)dx - YO - wto, 2 - 1 (35)

and the functions A, and A2 are undetermined at this level of approxima-

tion; they are determined by imposing the solvability conditions at the

next level of approximation. Substituting Eqs. (3l)-(35) into Eqs.

(19)-(24) yields the following eigenvalue problems:
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icg n + Drn - = nn 0 ,(36)

n+ 2n nn2

i(UOaL - Wk)i +n 2 DUO + ialn R (D2 n, 2) 0, (37)

i(UOaL - w)C + % - -R (D2 12 
-0, (38)

n2 nf4  R n

~ 0 at y 0, (40)
nl = 2 = ~3  (1

Cn ,~n22 (n -* 0 asy (41)

where DC = ar/ay. For a given wI3 and k, one can solve Eqs. (36)-

(41) numerically to determine the complex eigenvalue a and the eigenr-

functions Cnm*

Substituting Eqs. (3l)-(35) into Eqs. (25)-(28) yields

=-2 a3An , + MA n epi
n=iViW )x 1, az1  n3 )e in)

2 nY A n 1 exp(io n), (42)
n=ln xn

[ n 2iax nA
2(UVIPl [U1, n + N(u0 , + n4- R-w- ax

n= 1a 1 n 1  4 n x
aA2 2it a~n, 1 dot

C~n~ -An]exp(ie [(U0 _ R _x__L ~1  x

+z n~ U n9C 1
ax1  ax1 n, ay n n 2

+ V + -aL 12 - W Cj+ 2iaUIC 13]Ajexp[i62ay ay

+ 2i(O3 - ,)z0] - 1-X[iU1laC21 + V1i. -aU-1 ;2
2ay ay 2

- -r,2 2iL3UIC 23]A2exp[iej 2i(a - al)z 0] + NST, (43)
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A DA 2i n  9An
3[_, )n 2iotr ,+no 3(v.P1 ) = - 2 tA n + (U0 1) 3 + 21

(.- Tn 2  x I nn ' 2it7 n +Rn2 i x R 2 z

exp(ion) -nl [(U0 -R ax, R -n-n2

+ - (V0(n )]exp(ion) - X[iXUIC12 + D-(V1 12) - 1- 12

+ 2i Vjr? 3]Ajexp[iO 2 + 2i(8 - 81)zo] - 7 x[i U¢22

+ - (VI 22) - WI 22 2iVI 23]A2exp[ibl - 2i(B - 1 )zo]
ay(V4)--

+ NST, (44)

, (An 2i, 1An 2ib nc9t. (wn 3p R , nt 3 "'n R n4( ,p)=-n~ 1 [Tn 3 + (Uo - 3 + (Cn + -w-- [

~~D-1 x " ) - v [Uo 2i -R i n dx1 ~in=lnz ]exp(lin 2 T ) 'Cx, nl

+ Vo -- ]Anexp(i6 ) - X[iUOCz13 + (28 - I)WIC1

+ V, a 3 12]Ajexp[iO 2 + 2i(8 - 81)zolay - 1

lX[iUlCX r 3 + (28 - W)WIC23 + V1 3 23ay

+ i2-, 22]A2exp[iOj - 2i( - Bj)zo], (45)

where NST stands for terms that are proportional to exp[±i(8 + 8 1)zo],

which do not produce secular terms in ul, vi, wi, and pi.

Since the homogeneous parts of Eqs. (42)-(45), (29), and (30) are

the same as Eqs. (19)-(24) and since the latter have a nontrivial solu-

tion, the inhomogeneous equations (42)-(45), (29), and (30) have a

solution if, and only if, the inhomogeneous parts are orthogonal to

every solution of the adjoint homogeneous problem. These solvability

conditions depend on whether 8 8i or not. If a is away from 8i,
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the solvability conditions yield two uncoupled equations describing the

effect of nonparallelism on A, and A2. If a Z a,, we introduce a

detuning parameter a defined by

01 + cc (46)

where a 0(1) and express (B - 2a1)zo as ozl. Then, imposing the

solvability condition that the inhomogeneities be orthogonal to every

solution of the adjoint homogeneous problem, we obtain

g11 aA + 
912 a--T

+ g13  - = h1A1 + xh12A2exp(-iazi) (47)

921 aA. + 
922 T+ 923 LA = h2Az + xh2jAjexp(iazj) (48)

where the g's and h's are given in Appendix A together with the adjoint

problems. Differentiating Eqs. (19) - (24), respectively, with respect

to c and a n and imposing the solvability conditions, one can show that

gn2 gn3 = n (49)
gn l a n

where w and w are the complex group velocities in the x and z directions.

Since the solutions of Eqs. (47) and (48) for general initial

conditions are not available yet, we consider next the special case of

periodic streamwise vortices and a single-frequency disturbance that is

perfectly tuned in the spanwise wavenumber. The single-frequency

assumption corresponds to the case of a disturbance generated by a

vibrating ribbon. The second assumption demands that 5 : SI and that

the waves are modulated in the streamwise position only. Thus, we

consider the case in which DAn/at, = 9An/azi= 0 and a : 0. Then, Eqs.

(47) and (48) can be rewritten as

12



dA7
-d--= Eh1A1 + cvh12A2 (50)

dA2  A(1

dx = ch2A2 + 6vh21A, (51)

where

hn = h /gn2 h1 2 = h12/g1 2, 21 = h21/22

It follows from Eqs. (36) - (41) that 13 = - C23 and

Cin = C2 n for n / 3, while it follows from Eqs. (A.7) - (A.12) that

the adjoint solutions are related by 14 = - 24 and C1n = 2n for

n / 4. Hence, it follows from Eqs. (A.2), (A.4), (A.5), and (A.6) that

12= g2 2, h, = h2, h12 = h2 1.

Thus,

= h2 and h12 = h21.

Therefore, adding Eqs. (50) and (51) yields

d +

d-x (A2 + A,) 
= (chi + cvh 12)(A2 + A,) (52)

Subtracting Eq. (50) from Eq. (51) yields

d A A
d (A2 - A,) = (chi - %vh1 2)(A2 - A1 ) (53)

The solutions of Eqs. (52) and (53) are

A2 + A, 
= 2clexp[ (chi + Evh 12 )dx] (54)

A2 - A, = 2c2exp[ (Ehi - c v hl2)dx] (55)

where c1 and c2 are arbitrary constants that can be determined from the

initial conditions. Solving Eqs. (54) and (55) gives

A ~A A

A2 = clexp[ ( + vh)dx] + C2exp[ Eh -_Cvh1)dx]f P
A, = ciexp[f (ch1 + c d - c2)d exp[ fCh -C vhl2)dx]

(57)
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Substituting for A, and A2 in Eq. (31), using Eq. (35), substituting

the results into Eq. (14), and recalling that 0 1 , we obtain

u =llexp[ ia + chl)dx - ioz - iwt3 x

[cjexp(cvfhl 2dx) - c2exp(-cvfhl2dx)]

+ C21 exp[ (icl + eh1)dx + isz - iwt] x

[clexp(c vfh12dx) + c2 exp(-cvfh12dx)] + ... (58)

Equations (A.2) and (A.5) show that, in general, h12 is a complex

number. Hence, one of the terms multipling cl and c2 decays while the

other grows exponentially with distance. Thus, the growth rate a based

on u for either the wave with the positive or negative $ is

0 a + ^[Real(h1 ) + 3, ax + E; Real(h 12)j (59)o i + C[e l~ l 1-- T-1 j v

because ci = C21-.

Equation (59) shows that the growth rate is the sum of three

quantities: - ai, the quasi-parallel growth rate; the term proportional

to C, the effect of nonparallelism; and the term proportional to cv' the

effect of the streamwise vortices. Thus, in a given physical situation,

the relative influence of the vortices and nonparallelism depends on

the relative magnitudes of c and cv" For maximum amplified waves,

= 0(0-3), while for flows over concave surfaces, Ev can be (0.10),

depending on the radius of curvature. In such situations, the effects of

the vortices dominate the effects of nonparallelism, and the presence

of the vortices is a very powerful instability mechanism. Hence, the

presence of this mechanism may not be difficult to check experimentally.

This requires an experiment in which the amplitudes and spanwise varia-

tions of Gdrtler vortices and Tollmien-Schlichting waves on a concave

wall are measured. The spanwise variations of the G~rtler vortices and
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the generated Tollmien-Schlichting waves can be checked to see whether

the wavelengths of the latter are twice those of the vortices. The

modification of the mean flow due to the presence of the vortices can be

determined and the interaction coefficient h1 2 can be calculated from

Eqs. (A.2) and (A.5) by quadrature. Then, the variation of u with x and

y can be calculated from Eq. (58) and compared with the experimental

results.

It should be noted that the present analysis is valid only when

the amplitude of the Tollmien-Schlichting waves cT is small compared

with the amplitude of the vortices cv" As the Tollmien-Schlichting

waves grow, one needs to account for their influence on the vortices.

In fact, they will generate streamwise vortices having an amplitude

O(E:2) (Klebanoff, Tidstrom & Sargent, 1962; Benney & Lin, 1960), which

may strengthen or weeken the primary vortices, depending on their

phasings. This effect has not been taken into account in this paper.
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APPENDIX A

gn, (cl*2 n + cn *4)y(A.1)

gC* + (UO -* )]dy+

0 (A.2)

gc j C~ + c 14 i s n + CC + c C )]dy (A.3)

c__ 
____l d, a 'In + a.

n=n,+ [(U0 - R ax1  R C n1 dxl ax, ax, Cn

+v + [(U0 -* 2lct) a~n j cia+ v
ay n2  a x, R(o- f n2dx1  ay n2  n13

2i cta ' n _i dcx + v0 a~ n C* dy(A 4

-2h1 iaIC2 + l 2" +a-ul 22 -II2 - 2i8UIC 23hf 2
-2 f 1 21  ay~' ay

+ DaU1 22 + a- (V C22) - 81WlC 22 -i~C3t

+ [iczU1C23 + (28 - 81 )W1C23 + V,, 3 23 + W 22hf~ldy (A.5)ay a

f[[~l iacz~il + Vi1 ~l+ U 1 - 81W1Cl1 + 2iMU1 1] 2

+ [iCEUI 1j2 + a (VI;12) - alWlC 12 + 2iaVI1 1] 3 + [icxt~i~ia

(28 - 81)W1 13 + V I ay * 12]M41 dy (A.6)
aay
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where the nmare solutions of the following adjoint problems:

icactn + i(Uoct-W)n - (D2 U n n)i 0 (A.7)

- Dc + DUac + 1(UOa-~ W (0 2 _ (X2 - C 0ni n2  n3  R n n3
(A.8)

-ac + j(UOa -W)C (0 2 a2_ * 0 (A9
n n, n4  R n4 2)* =0 A9

c -0 as y 0(A.12)
~nm
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